Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Chem Biodivers ; 21(4): e202301928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409504

RESUMO

This article describes the reaction of vindoline with formaldehyde and trimethyl orthoformate to prepare vindolicine, tris-vindolicinyl methane and higher molecular weight homologues. The synthesis of 10-formyl vindoline as an intermediate allowed further exploration of its chemistry, in particular the reaction with acetone which yielded a symmetrical dimer, which was further reacted with vindoline to give molecules containing three and four vindoline units. These molecules were characterized by NMR and for some of them (vindolicine, 10-formyl vindoline, 10-(1'-(but-1'-en-3'-one))-vindoline) by X-ray crystallography. Depending on the substitution and on the absence of axes of symmetry, the NMR spectra displayed non-equivalent spin systems for the vindoline moieties. The dimer formed from the double condensation of 10-formyl vindoline with acetone showed cytotoxic activity in the micromolar range.


Assuntos
Antineoplásicos , Alcaloides de Vinca , Acetona , Alcaloides de Vinca/química , Estrutura Molecular
2.
Int J Biol Macromol ; 262(Pt 2): 130091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354931

RESUMO

Besides tryptamine (1) and secologanin (2), non-cognate substrates also undergo a Pictet-Spengler reaction (PSR) catalyzed by strictosidine synthases (STR) with differing catalytic properties. We characterized the bisubstrate binding aspect of catalysis - order, affinity, and cooperativity - with STR orthologs from Rauvolfia serpentina (RsSTR) and Ophiorrhiza pumila (OpSTR) by an isothermal titration calorimetry (ITC) based 'proxy approach' that employed a non-reactive tryptamine analog (m1) to capture its inert ternary complexes with STRs and (2). ITC studies with OpSTR and (2) revealed 'tryptamine-first' cooperative binding with (1) and a simultaneous cooperative binding with (m1). Binding cooperativity among (m1) and (2) towards OpSTR was higher than RsSTR. Crystallographic study of RsSTR-(m1) complex helped to understand the unreactive binding of (m1) in terms of orientation and interactions in the RsSTR pocket. PSR with (m1) was revealed to be energetically unfeasible by the density functional theory (DFT) scans of the first hydrogen abstraction by RsSTR. The effect of pH on the bisubstrate binding to OpSTR was deciphered by molecular dynamics simulations (MDS), which also provided a molecular basis for the stability of complex of OpSTR with (m1) and (2). Therefore, we investigated STRs from a substrate binding perspective to inform drug-design and rational enzyme engineering efforts.


Assuntos
Rauwolfia , Alcaloides de Vinca , Alcaloides de Vinca/química , Alcaloides de Vinca/metabolismo , Rauwolfia/metabolismo , Catálise , Triptaminas
3.
ChemistryOpen ; 12(6): e202300043, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37248801

RESUMO

Strictosidine synthase (STR) catalyzes the Pictet-Spengler (PS) reaction of tryptamine and secologanin to produce strictosidine. Recent studies demonstrated that the enzyme can also catalyze the reaction of non-natural substrates to form new alkaloid skeletons. For example, the PS condensation of 1H-indole-4-ethanamine with secologanin could be promoted by the STR from Rauvolfia serpentina (RsSTR) to generate a rare class of skeletons with a seven-membered ring, namely azepino-[3,4,5-cd]-indoles, which are precursors for the synthesis of new compounds displaying antimalarial activity. In the present study, the detailed reaction mechanism of RsSTR-catalyzed formation of the rare seven-membered azepino-indole skeleton through the PS reaction was revealed at the atomic level by quantum chemical calculations. The structures of the transition states and intermediates involved in the reaction pathway were optimized, and the energetics of the complete reaction were analyzed. Based on our calculation results, the most likely pathway of the enzyme-catalyzed reaction was determined, and the rate-determining step of the reaction was clarified. The mechanistic details obtained in the present study are important in understanding the promiscuous activity of RsSTR in the formation of the rare azepino-indole skeleton molecule and are also helpful in designing STR enzymes for the synthesis of other new alkaloid skeleton molecules.


Assuntos
Alcaloides , Alcaloides de Vinca , Alcaloides de Vinca/química , Esqueleto
4.
J Biomol Struct Dyn ; 41(24): 15634-15646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943789

RESUMO

The Rauvolfia serpentina strictosidine synthase (RsSTR) enzyme with a bisubstrate activity is central to monoterpenoid indole alkaloid (MIA) biosynthesis pathways, as it stereoselectively condenses the terpenoid and indole metabolites, secologanin and tryptamine, respectively, into strictosidine. Here, cooperativity was aimed to be deciphered by proxy with help of a non-substrate tryptamine analog (decoy compound) to allow a bisubstrate binding without reaction, facilitating an isothermal titration calorimetry (ITC)-based analysis of the effect of the presence of one substrate on the binding of the other. Tryptamine and tryptamine analog bound to RsSTR with similar binding affinities (Kd). On the contrary, ITC revealed an exothermic titration of secologanin to RsSTR but could not fully quantify it because of weak binding. Interestingly, secologanin bound to RsSTR with an apparent binding affinity (Kd,app) of 212.1 µM in the presence of the decoy compound, as opposed to a lack of binding to RsSTR alone, strongly suggesting a "tryptamine-first" mode of binding. Conversely, binding of tryptamine analog in the presence of secologanin was enhanced >3-fold. Further, molecular dynamics simulation (MDS) analyses revealed the conformational flexibility needed for such cooperativity. Our binding studies complemented with the computational analyses suggested cooperativity in the ordered bisubstrate binding to RsSTR. Therefore, understanding thermodynamics and cooperativity in the binding of substrates or ligands would help to unravel the mechanism of enzyme catalysis and ligand-receptor interactions, and would guide the redesign of enzymes for enhanced properties and the design of inhibitors against enzymes and receptors.Communicated by Ramaswamy H. Sarma.


Assuntos
Alcaloides de Vinca , Alcaloides de Vinca/química , Glucosídeos Iridoides , Triptaminas
5.
Int J Biol Macromol ; 226: 1360-1373, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36442554

RESUMO

Plant-derived monoterpene indole alkaloids (MIAs) from Uncaria rhynchophylla (UR) have huge medicinal properties in treating Alzheimer's disease, Parkinson's disease, and depression. Although many bioactive UR-MIA products have been isolated as drugs, their biosynthetic pathway remains largely unexplored. In this study, untargeted metabolome identified 79 MIA features in UR tissues (leaf, branch stem, hook stem, and stem), of which 30 MIAs were differentially accumulated among different tissues. Short time series expression analysis captured 58 pathway genes and 12 hub regulators responsible for UR-MIA biosynthesis and regulation, which were strong links with main UR-MIA features. Coexpression networks further pointed to two strictosidine synthases (UrSTR1/5) that were coregulated with multiple MIA-related genes and highly correlated with UR-MIA features (r > 0.7, P < 0.005). Both UrSTR1/5 catalyzed the formation of strictosidine with tryptamine and secologanin as substrates, highlighting the importance of key residues (UrSTR1: Glu309, Tyr155; UrSTR5: Glu295, Tyr141). Further, overexpression of UrSTR1/5 in UR hairy roots constitutively increased the biosynthesis of bioactive UR-MIAs (rhynchophylline, isorhynchophylline, corynoxeine, etc), whereas RNAi of UrSTR1/5 significantly decreased UR-MIA biosynthesis. Collectively, our work not only provides candidates for reconstituting the biosynthesis of bioactive UR-MIAs in heterologous hosts but also highlights a powerful strategy for mining natural product biosynthesis in medicinal plants.


Assuntos
Alcaloides , Alcaloides de Vinca , Monoterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Alcaloides de Vinca/química , Alcaloides de Vinca/metabolismo
6.
Nature ; 609(7926): 341-347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045295

RESUMO

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues.


Assuntos
Antineoplásicos , Reatores Biológicos , Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Vimblastina , Alcaloides de Vinca , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/provisão & distribuição , Catharanthus/química , Genes Fúngicos , Genes de Plantas , Engenharia Metabólica/métodos , Fosfatos de Poli-Isoprenil , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triptofano , Vimblastina/biossíntese , Vimblastina/química , Vimblastina/provisão & distribuição , Alcaloides de Vinca/biossíntese , Alcaloides de Vinca/química , Alcaloides de Vinca/provisão & distribuição
7.
Methods Mol Biol ; 2505: 79-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732938

RESUMO

Strictosidine is the common biosynthetic precursor of Monoterpene Indole Alkaloids (MIA). A practical single-step procedure to assemble strictosidine from secologanin is described via a bioinspired Pictet-Spengler reaction. Mild conditions and purification by crystallization and flash chromatography allow access to the targeted product in fair yield.


Assuntos
Alcaloides de Vinca , Alcaloides de Vinca/química
8.
Angew Chem Int Ed Engl ; 60(33): 17957-17962, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34036708

RESUMO

A synthetic approach to the heterodimeric bisindole alkaloid leucophyllidine is disclosed herein. An enantioenriched lactam building block, synthesized through palladium-catalyzed asymmetric allylic alkylation, served as the precursor to both hemispheres. The eburnamonine-derived fragment was synthesized through a Bischler-Napieralski/hydrogenation approach, while the eucophylline-derived fragment was synthesized by Friedländer quinoline synthesis and two sequential C-H functionalization steps. A convergent Stille coupling and phenol-directed hydrogenation united the two monomeric fragments to afford 16'-epi-leucophyllidine in 21 steps from commercial material.


Assuntos
Compostos Azabicíclicos/síntese química , Alcaloides Indólicos/síntese química , Alcaloides de Vinca/síntese química , Compostos Azabicíclicos/química , Alcaloides Indólicos/química , Estrutura Molecular , Estereoisomerismo , Alcaloides de Vinca/química
9.
J Am Chem Soc ; 143(19): 7471-7479, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955226

RESUMO

Monoterpene indole alkaloids are a large class of natural products derived from a single biosynthetic precursor, strictosidine. We describe a synthetic approach to strictosidine that relies on a key facially selective Diels-Alder reaction between a glucosyl-modified alkene and an enal to set the C15-C20-C21 stereotriad. DFT calculations were used to examine the origin of stereoselectivity in this key step, wherein two of 16 possible isomers are predominantly formed. These calculations suggest the presence of a glucosyl unit, also inherent in the strictosidine structure, guides diastereoselectivity, with the reactive conformation of the vinyl glycoside dienophile being controlled by an exo-anomeric effect. (-)-Strictosidine was subsequently accessed using late-stage synthetic manipulations and an enzymatic Pictet-Spengler reaction. Several new natural product analogs were also accessed, including precursors to two unusual aryne natural product derivatives termed "strictosidyne" and "strictosamidyne". These studies provide a strategy for accessing glycosylic natural products and a new platform to access monoterpene indole alkaloids and their derivatives.


Assuntos
Alcinos/química , Produtos Biológicos/química , Alcaloides de Vinca/síntese química , Estrutura Molecular , Estereoisomerismo , Alcaloides de Vinca/química
11.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619102

RESUMO

Tubulin-targeted chemotherapy has proven to be a successful and wide spectrum strategy against solid and liquid malignancies. Therefore, new ways to modulate this essential protein could lead to new antitumoral pharmacological approaches. Currently known tubulin agents bind to six distinct sites at α/ß-tubulin either promoting microtubule stabilization or depolymerization. We have discovered a seventh binding site at the tubulin intradimer interface where a novel microtubule-destabilizing cyclodepsipeptide, termed gatorbulin-1 (GB1), binds. GB1 has a unique chemotype produced by a marine cyanobacterium. We have elucidated this dual, chemical and mechanistic, novelty through multidimensional characterization, starting with bioactivity-guided natural product isolation and multinuclei NMR-based structure determination, revealing the modified pentapeptide with a functionally critical hydroxamate group; and validation by total synthesis. We have investigated the pharmacology using isogenic cancer cell screening, cellular profiling, and complementary phenotypic assays, and unveiled the underlying molecular mechanism by in vitro biochemical studies and high-resolution structural determination of the α/ß-tubulin-GB1 complex.


Assuntos
Antineoplásicos/síntese química , Proteínas de Bactérias/síntese química , Produtos Biológicos/síntese química , Depsipeptídeos/síntese química , Microtúbulos/efeitos dos fármacos , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Colchicina/química , Colchicina/farmacologia , Cristalografia por Raios X , Cianobactérias/química , Depsipeptídeos/isolamento & purificação , Depsipeptídeos/farmacologia , Descoberta de Drogas , Células HCT116 , Humanos , Maitansina/química , Maitansina/farmacologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pironas/química , Pironas/farmacologia , Taxoides/química , Taxoides/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/isolamento & purificação , Moduladores de Tubulina/farmacologia , Alcaloides de Vinca/química , Alcaloides de Vinca/farmacologia
12.
Org Lett ; 23(5): 1793-1797, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33625237

RESUMO

The enzymatic basis for quinine 1 biosynthesis was investigated. Transcriptomic data from the producing plant led to the discovery of three enzymes involved in the early and late steps of the pathway. A medium-chain alcohol dehydrogenase (CpDCS) and an esterase (CpDCE) yielded the biosynthetic intermediate dihydrocorynantheal 2 from strictosidine aglycone 3. Additionally, the discovery of an O-methyltransferase specific for 6'-hydroxycinchoninone 4 suggested the final step order to be cinchoninone 16/17 hydroxylation, methylation, and keto-reduction.


Assuntos
Metiltransferases/metabolismo , Quinina/química , Quinina/metabolismo , Alcaloides de Vinca/química , Hidroxilação , Estrutura Molecular
13.
Org Lett ; 23(4): 1355-1360, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33522824

RESUMO

Toward the mavacurane and akuammilane monoterpene indole alkaloids, we developed divergent oxidative couplings between the indole nucleus (at N1 or C7) and the C16-malonate of a common tricyclic model related to strictosidine according to a biosynthetic hypothesis postulated by Hesse and Schmid. These oxidative cyclizations led selectively to the formation of the N1-C16 bond of pleiocarpamine or to the C7-C16 bond of strictamine. We were then able to obtain the scaffold of talbotine.


Assuntos
Alcaloides/química , Monoterpenos/química , Alcaloides de Vinca/química , Ciclização , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Estrutura Molecular , Oxirredução
14.
Nat Chem ; 13(3): 236-242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432109

RESUMO

The development of efficient methods, particularly catalytic and enantioselective processes, for the construction of all-carbon quaternary stereocentres is an important (and difficult) challenge in organic synthesis due to the occurrence of this motif in a range of bioactive molecules. One conceptually straightforward and potentially versatile approach is the catalytic enantioconvergent substitution reaction of a readily available racemic tertiary alkyl electrophile by an organometallic nucleophile; however, examples of such processes are rare. Here we demonstrate that a nickel-based chiral catalyst achieves enantioconvergent couplings of a variety of tertiary electrophiles (cyclic and acyclic α-halocarbonyl compounds) with alkenylmetal nucleophiles to form quaternary stereocentres with good yield and enantioselectivity under mild conditions in the presence of a range of functional groups. These couplings, which probably proceed via a radical pathway, provide access to an array of useful families of organic compounds, including intermediates in the total synthesis of two natural products, (-)-eburnamonine and madindoline A.


Assuntos
Produtos Biológicos/química , Carbono/química , Níquel/química , Produtos Biológicos/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Catálise , Indóis/síntese química , Indóis/química , Estereoisomerismo , Alcaloides de Vinca/síntese química , Alcaloides de Vinca/química
15.
Angew Chem Int Ed Engl ; 59(4): 1527-1531, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31799799

RESUMO

The first total synthesis of the caged monoterpene indole alkaloid cymoside is reported. This natural product displays a unique hexacyclic-fused skeleton whose biosynthesis implies an early oxidative cyclization of strictosidine. Our approach to the furo[3,2-b]indoline framework relied on an unprecedented biomimetic sequence which started by the diastereoselective oxidation of the indole ring into a hydroxyindolenine which triggered the addition of an enol ether and was followed by the trapping of an oxocarbenium intermediate.


Assuntos
Produtos Biológicos/química , Alcaloides de Vinca/química , Ciclização , Estrutura Molecular , Oxirredução , Estereoisomerismo
16.
Bioorg Med Chem Lett ; 30(2): 126472, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31859156

RESUMO

A new series of Vinpocetine derivatives were synthesized and evaluated for their inhibitory activity on PDE1A in vitro. Seven compounds with higher inhibitory activity were selected for surface plasmon resonance (SPR) binding experiments. Compared with Vinpocetine, these high potency compounds presented a higher binding affinity with PDE1A, which was consistent with inhibitory activity. After further screening, compounds 5, 7, 21, 34 and Vinpocetine were selected to examine the vasorelaxant effects on endothelium-intact rat thoracic aortic rings. The study suggested that the effects of compounds 7 and 21 were the most significant with the maximum value of 93.46 ±â€¯0.77% and 92.90 ±â€¯0.78% (n = 5) at a concentration of 100 µM respectively. Based on these studies, compounds 7 and 21 were considered for further development as hit compounds.


Assuntos
Vasodilatadores/síntese química , Alcaloides de Vinca/química , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Cinética , Ratos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia , Alcaloides de Vinca/metabolismo , Alcaloides de Vinca/farmacologia
17.
J Am Chem Soc ; 141(36): 14349-14355, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442047

RESUMO

A new triarylaminium radical cation promoted coupling of catharanthine with vindoline is disclosed, enlisting tris(4-bromophenyl)aminium hexachlororantimonate (BAHA, 1.1 equiv) in aqueous 0.05 N HCl/trifluoroethanol (1-10:1) at room temperature (25 °C), that provides anhydrovinblastine in superb yield (85%) with complete control of the newly formed quaternary C16' stereochemistry. A definition of the scope of aromatic substrates that participate with catharanthine in the BAHA-mediated diastereoselective coupling reaction and simplified indole substrates other than catharanthine that participate in the reaction are disclosed that identify the key structural features required for participation in the reaction, providing a generalized indole functionalization reaction that bears little structural relationship to catharanthine or vindoline.


Assuntos
Aminas/química , Vimblastina/análogos & derivados , Vimblastina/síntese química , Alcaloides de Vinca/química , Cátions/química , Radicais Livres/química , Estrutura Molecular , Estereoisomerismo , Vimblastina/química
18.
Bioorg Med Chem Lett ; 29(16): 2270-2274, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257082

RESUMO

Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non-decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptores de GABA/análise , Alcaloides de Vinca/química , Animais , Relação Dose-Resposta a Droga , Radioisótopos de Flúor , Ligantes , Macaca fascicularis , Modelos Moleculares , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual , Alcaloides de Vinca/síntese química , Alcaloides de Vinca/farmacocinética
19.
Molecules ; 24(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646543

RESUMO

10-Dehydroxyl-12-demethoxy-conophylline is a natural anticancer candidate. The motivation of this study was to explore the pharmacokinetic profiles, tissue distribution, and plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline in Sprague Dawley rats. A rapid, sensitive, and specific ultra-performance liquid chromatography (UPLC) system with a fluorescence (FLR) detection method was developed for the determination of 10-dehydroxyl-12-demethoxy-conophylline in different rat biological samples. After intravenous (i.v.) dosing of 10-dehydroxyl-12-demethoxy-conophylline at different levels (4, 8, and 12 mg/kg), the half-life t1/2α of intravenous administration was about 7 min and the t1/2ß was about 68 min. The AUC0→∞ increased in a dose-proportional manner from 68.478 µg/L·min for 4 mg/kg to 305.616 mg/L·min for 12 mg/kg. After intragastrical (i.g.) dosing of 20 mg/kg, plasma levels of 10-dehydroxyl-12-demethoxy-conophylline peaked at about 90 min. 10-dehydroxyl-12-demethoxy-conophyllinea absolute oral bioavailability was only 15.79%. The pharmacokinetics process of the drug was fit to a two-room model. Following a single i.v. dose (8 mg/kg), 10-dehydroxyl-12-demethoxy-conophylline was detected in all examined tissues with the highest in kidney, liver, and lung. Equilibrium dialysis was used to evaluate plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline at three concentrations (1.00, 2.50, and 5.00 µg/mL). Results indicated a very high protein binding degree (over 80%), reducing substantially the free fraction of the compound.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Proteínas Sanguíneas/metabolismo , Alcaloides de Vinca/farmacocinética , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Feminino , Masculino , Estrutura Molecular , Ligação Proteica , Ratos , Distribuição Tecidual , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/química
20.
Drug Des Devel Ther ; 13: 205-220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643387

RESUMO

BACKGROUND: This work aimed to develop a new solid dosage formulation of vinpocetine (VPN) in the form of buccal freeze-dried pullulan-based tablets (lyoplant-tabs) loaded with physically modified drug binary system. METHODS: Different polyvinyl pyrrolidone (PVP) grades were studied to prepare an efficient VPN binary system characterized by enhanced equilibrium saturation solubility, solubilization efficiency, thermodynamic stability, and permeation through oral mucosal cell lines. The concentrations of pullulan and swelling-aid polymer that affect the quality attributes of lyoplant-tabs were optimized. Clinical pharmacokinetics study on human volunteers for the optimized lyoplant-tabs compared to marketed product was accomplished. RESULTS: A promising drug binary system with polyvinyl pyrrolidone vinyl acetate (PVP-VA64) utilizing the lyophilization technique was developed. Solid-state characterization confirmed transformation of VPN completely into the amorphous form. The concentrations of pullulan and swelling-aid polymer were significantly affecting the characteristics of the tablets. Compared to the commercial VPN tablets, pullulan-based buccal tablets demonstrated enhancement in the studied pharmacokinetic parameters with positive impact on the drug bioavailability. CONCLUSION: These VPN lyoplant-tabs containing lyophilized PVP-VA64-VPN binary system can be considered as an alternative to currently available marketed tablets; however, further preclinical investigations using large number of volunteers are required.


Assuntos
Alcaloides de Vinca/farmacocinética , Composição de Medicamentos , Liofilização , Voluntários Saudáveis , Humanos , Povidona/química , Solubilidade , Comprimidos/química , Comprimidos/farmacocinética , Termodinâmica , Alcaloides de Vinca/química , Compostos de Vinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...